ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.06871
17
24

Uncertainty Modeling of Emerging Device-based Computing-in-Memory Neural Accelerators with Application to Neural Architecture Search

6 July 2021
Zheyu Yan
Da-Cheng Juan
X. S. Hu
Yiyu Shi
ArXivPDFHTML
Abstract

Emerging device-based Computing-in-memory (CiM) has been proved to be a promising candidate for high-energy efficiency deep neural network (DNN) computations. However, most emerging devices suffer uncertainty issues, resulting in a difference between actual data stored and the weight value it is designed to be. This leads to an accuracy drop from trained models to actually deployed platforms. In this work, we offer a thorough analysis of the effect of such uncertainties-induced changes in DNN models. To reduce the impact of device uncertainties, we propose UAE, an uncertainty-aware Neural Architecture Search scheme to identify a DNN model that is both accurate and robust against device uncertainties.

View on arXiv
Comments on this paper