115
34
v1v2v3v4v5v6v7v8 (latest)

From block-Toeplitz matrices to differential equations on graphs: towards a general theory for scalable masked Transformers

Abstract

In this paper we provide, to the best of our knowledge, the first comprehensive approach for incorporating various masking mechanisms into Transformers architectures in a scalable way. We show that recent results on linear causal attention (Choromanski et al., 2021) and log-linear RPE-attention (Luo et al., 2021) are special cases of this general mechanism. However by casting the problem as a topological (graph-based) modulation of unmasked attention, we obtain several results unknown before, including efficient d-dimensional RPE-masking and graph-kernel masking. We leverage many mathematical techniques ranging from spectral analysis through dynamic programming and random walks to new algorithms for solving Markov processes on graphs. We provide a corresponding empirical evaluation.

View on arXiv
Comments on this paper