479
v1v2v3v4 (latest)

A Survey on Data-driven Software Vulnerability Assessment and Prioritization

ACM Computing Surveys (CSUR), 2021
Abstract

Software Vulnerabilities (SVs) are increasing in complexity and scale, posing great security risks to many software systems. Given the limited resources in practice, SV assessment and prioritization help practitioners devise optimal SV mitigation plans based on various SV characteristics. The surges in SV data sources and data-driven techniques such as Machine Learning and Deep Learning have taken SV assessment and prioritization to the next level. Our survey provides a taxonomy of the past research efforts and highlights the best practices for data-driven SV assessment and prioritization. We also discuss the current limitations and propose potential solutions to address such issues.

View on arXiv
Comments on this paper