36
15

Higher-degree supersingular group actions

Abstract

We investigate the isogeny graphs of supersingular elliptic curves over Fp2\mathbb{F}_{p^2} equipped with a dd-isogeny to their Galois conjugate. These curves are interesting because they are, in a sense, a generalization of curves defined over Fp\mathbb{F}_p, and there is an action of the ideal class group of Q(dp)\mathbb{Q}(\sqrt{-dp}) on the isogeny graphs. We investigate constructive and destructive aspects of these graphs in isogeny-based cryptography, including generalizations of the CSIDH cryptosystem and the Delfs-Galbraith algorithm.

View on arXiv
Comments on this paper