ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.09142
345
98

Sequence-to-Sequence Piano Transcription with Transformers

International Society for Music Information Retrieval Conference (ISMIR), 2021
19 July 2021
Curtis Hawthorne
Ian Simon
Rigel Swavely
Ethan Manilow
Jesse Engel
ArXiv (abs)PDFHTML
Abstract

Automatic Music Transcription has seen significant progress in recent years by training custom deep neural networks on large datasets. However, these models have required extensive domain-specific design of network architectures, input/output representations, and complex decoding schemes. In this work, we show that equivalent performance can be achieved using a generic encoder-decoder Transformer with standard decoding methods. We demonstrate that the model can learn to translate spectrogram inputs directly to MIDI-like output events for several transcription tasks. This sequence-to-sequence approach simplifies transcription by jointly modeling audio features and language-like output dependencies, thus removing the need for task-specific architectures. These results point toward possibilities for creating new Music Information Retrieval models by focusing on dataset creation and labeling rather than custom model design.

View on arXiv
Comments on this paper