ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.09332
43
14
v1v2 (latest)

Improving Sentence-Level Relation Extraction through Curriculum Learning

20 July 2021
Seongsik Park
Harksoo Kim
ArXiv (abs)PDFHTML
Abstract

Sentence-level relation extraction mainly aims to classify the relation between two entities in a sentence. The sentence-level relation extraction corpus often contains data that are difficult for the model to infer or noise data. In this paper, we propose a curriculum learning-based relation extraction model that splits data by difficulty and utilizes them for learning. In the experiments with the representative sentence-level relation extraction datasets, TACRED and Re-TACRED, the proposed method obtained an F1-score of 75.0% and 91.4% respectively, which are the state-of-the-art performance.

View on arXiv
Comments on this paper