169
v1v2v3v4 (latest)

FedLab: A Flexible Federated Learning Framework

Journal of machine learning research (JMLR), 2021
Abstract

Federated learning (FL) is a machine learning field in which researchers try to facilitate model learning process among multiparty without violating privacy protection regulations. Considerable effort has been invested in FL optimization and communication related researches. In this work, we introduce \texttt{FedLab}, a lightweight open-source framework for FL simulation. The design of \texttt{FedLab} focuses on FL algorithm effectiveness and communication efficiency. Also, \texttt{FedLab} is scalable in different deployment scenario. We hope \texttt{FedLab} could provide flexible API as well as reliable baseline implementations, and relieve the burden of implementing novel approaches for researchers in FL community.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.