ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2107.11979
23
6

HYPER-SNN: Towards Energy-efficient Quantized Deep Spiking Neural Networks for Hyperspectral Image Classification

26 July 2021
Gourav Datta
Souvik Kundu
Akhilesh R. Jaiswal
P. Beerel
ArXivPDFHTML
Abstract

Hyper spectral images (HSI) provide rich spectral and spatial information across a series of contiguous spectral bands. However, the accurate processing of the spectral and spatial correlation between the bands requires the use of energy-expensive 3-D Convolutional Neural Networks (CNNs). To address this challenge, we propose the use of Spiking Neural Networks (SNNs) that are generated from iso-architecture CNNs and trained with quantization-aware gradient descent to optimize their weights, membrane leak, and firing thresholds. During both training and inference, the analog pixel values of a HSI are directly applied to the input layer of the SNN without the need to convert to a spike-train. The reduced latency of our training technique combined with high activation sparsity yields significant improvements in computational efficiency. We evaluate our proposal using three HSI datasets on a 3-D and a 3-D/2-D hybrid convolutional architecture. We achieve overall accuracy, average accuracy, and kappa coefficient of 98.68%, 98.34%, and 98.20% respectively with 5 time steps (inference latency) and 6-bit weight quantization on the Indian Pines dataset. In particular, our models achieved accuracies similar to state-of-the-art (SOTA) with 560.6 and 44.8 times less compute energy on average over three HSI datasets than an iso-architecture full-precision and 6-bit quantized CNN, respectively.

View on arXiv
Comments on this paper