Network error. Please check your internet connection.
Network error. Please check your internet connection.
Network error. Please check your internet connection.
Network error. Please check your internet connection.
68

Pitch-Informed Instrument Assignment Using a Deep Convolutional Network with Multiple Kernel Shapes

Abstract

This paper proposes a deep convolutional neural network for performing note-level instrument assignment. Given a polyphonic multi-instrumental music signal along with its ground truth or predicted notes, the objective is to assign an instrumental source for each note. This problem is addressed as a pitch-informed classification task where each note is analysed individually. We also propose to utilise several kernel shapes in the convolutional layers in order to facilitate learning of efficient timbre-discriminative feature maps. Experiments on the MusicNet dataset using 7 instrument classes show that our approach is able to achieve an average F-score of 0.904 when the original multi-pitch annotations are used as the pitch information for the system, and that it also excels if the note information is provided using third-party multi-pitch estimation algorithms. We also include ablation studies investigating the effects of the use of multiple kernel shapes and comparing different input representations for the audio and the note-related information.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.