ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.01561
8
2

Learning a Neural Diff for Speech Models

3 August 2021
J. Macoskey
Grant P. Strimel
Ariya Rastrow
ArXivPDFHTML
Abstract

As more speech processing applications execute locally on edge devices, a set of resource constraints must be considered. In this work we address one of these constraints, namely over-the-network data budgets for transferring models from server to device. We present neural update approaches for release of subsequent speech model generations abiding by a data budget. We detail two architecture-agnostic methods which learn compact representations for transmission to devices. We experimentally validate our techniques with results on two tasks (automatic speech recognition and spoken language understanding) on open source data sets by demonstrating when applied in succession, our budgeted updates outperform comparable model compression baselines by significant margins.

View on arXiv
Comments on this paper