ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.01862
6
4

Reconstructing a dynamical system and forecasting time series by self-consistent deep learning

4 August 2021
Zhe Wang
C. Guet
    AI4TS
ArXivPDFHTML
Abstract

We introduce a self-consistent deep-learning framework which, for a noisy deterministic time series, provides unsupervised filtering, state-space reconstruction, identification of the underlying differential equations and forecasting. Without a priori information on the signal, we embed the time series in a state space, where deterministic structures, i.e. attractors, are revealed. Under the assumption that the evolution of solution trajectories is described by an unknown dynamical system, we filter out stochastic outliers. The embedding function, the solution trajectories and the dynamical systems are constructed using deep neural networks, respectively. By exploiting the differentiability of the neural solution trajectory, the neural dynamical system is defined locally at each time, mitigating the need for propagating gradients through numerical solvers. On a chaotic time series masked by additive Gaussian noise, we demonstrate the filtering ability and the predictive power of the proposed framework.

View on arXiv
Comments on this paper