ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.03001
14
0

Learning to Rank Ace Neural Architectures via Normalized Discounted Cumulative Gain

6 August 2021
Yuge Zhang
Quan Zhang
Li Lyna Zhang
Yaming Yang
Chenqian Yan
Xiaotian Gao
Yuqing Yang
ArXivPDFHTML
Abstract

One of the key challenges in Neural Architecture Search (NAS) is to efficiently rank the performances of architectures. The mainstream assessment of performance rankers uses ranking correlations (e.g., Kendall's tau), which pay equal attention to the whole space. However, the optimization goal of NAS is identifying top architectures while paying less attention on other architectures in the search space. In this paper, we show both empirically and theoretically that Normalized Discounted Cumulative Gain (NDCG) is a better metric for rankers. Subsequently, we propose a new algorithm, AceNAS, which directly optimizes NDCG with LambdaRank. It also leverages weak labels produced by weight-sharing NAS to pre-train the ranker, so as to further reduce search cost. Extensive experiments on 12 NAS benchmarks and a large-scale search space demonstrate that our approach consistently outperforms SOTA NAS methods, with up to 3.67% accuracy improvement and 8x reduction on search cost.

View on arXiv
Comments on this paper