ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.03064
22
17

Spatiotemporal Contrastive Learning of Facial Expressions in Videos

6 August 2021
Shuvendu Roy
Ali Etemad
ArXivPDFHTML
Abstract

We propose a self-supervised contrastive learning approach for facial expression recognition (FER) in videos. We propose a novel temporal sampling-based augmentation scheme to be utilized in addition to standard spatial augmentations used for contrastive learning. Our proposed temporal augmentation scheme randomly picks from one of three temporal sampling techniques: (1) pure random sampling, (2) uniform sampling, and (3) sequential sampling. This is followed by a combination of up to three standard spatial augmentations. We then use a deep R(2+1)D network for FER, which we train in a self-supervised fashion based on the augmentations and subsequently fine-tune. Experiments are performed on the Oulu-CASIA dataset and the performance is compared to other works in FER. The results indicate that our method achieves an accuracy of 89.4%, setting a new state-of-the-art by outperforming other works. Additional experiments and analysis confirm the considerable contribution of the proposed temporal augmentation versus the existing spatial ones.

View on arXiv
Comments on this paper