ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.03815
46
0

P-WAE: Generalized Patch-Wasserstein Autoencoder for Anomaly Screening

9 August 2021
Yurong Chen
ArXivPDFHTML
Abstract

Anomaly detection plays a pivotal role in numerous real-world scenarios, such as industrial automation and manufacturing intelligence. Recently, variational inference-based anomaly analysis has attracted researchers' and developers' attention. It aims to model the defect-free distribution so that anomalies can be classified as out-of-distribution samples. Nevertheless, there are two disturbing factors that need us to prioritize: (i) the simplistic prior latent distribution inducing limited expressive capability; (ii) the strong probability distance notion results in collapsed features. In this paper, we propose a novel Patch-wise Wasserstein AutoEncoder (P-WAE) architecture to alleviate those challenges. In particular, a patch-wise variational inference model coupled with solving the jigsaw puzzle is designed, which is a simple yet effective way to increase the expressiveness of the latent manifold. This makes using the model on high-dimensional practical data possible. In addition, we leverage a weaker measure, sliced-Wasserstein distance, to achieve the equilibrium between the reconstruction fidelity and generalized representations. Comprehensive experiments, conducted on the MVTec AD dataset, demonstrate the superior performance of our proposed method.

View on arXiv
Comments on this paper