ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.03861
23
14

KGAP: Knowledge Graph Augmented Political Perspective Detection in News Media

9 August 2021
Shangbin Feng
Zilong Chen
Wenqian Zhang
Qingyao Li
Qinghua Zheng
Xiao Chang
Minnan Luo
ArXivPDFHTML
Abstract

Identifying political perspectives in news media has become an important task due to the rapid growth of political commentary and the increasingly polarized political ideologies. Previous approaches focus on textual content and leave out the rich social and political context that is essential in the perspective detection process. To address this limitation, we propose KGAP, a political perspective detection method that incorporates external domain knowledge. Specifically, we construct a political knowledge graph to serve as domain-specific external knowledge. We then construct heterogeneous information networks to represent news documents, which jointly model news text and external knowledge. Finally, we adopt relational graph neural networks and conduct political perspective detection as graph-level classification. Extensive experiments demonstrate that our method consistently achieves the best performance on two real-world perspective detection benchmarks. Ablation studies further bear out the necessity of external knowledge and the effectiveness of our graph-based approach.

View on arXiv
Comments on this paper