ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.04657
29
52

Differentiable Subset Pruning of Transformer Heads

10 August 2021
Jiaoda Li
Ryan Cotterell
Mrinmaya Sachan
ArXivPDFHTML
Abstract

Multi-head attention, a collection of several attention mechanisms that independently attend to different parts of the input, is the key ingredient in the Transformer. Recent work has shown, however, that a large proportion of the heads in a Transformer's multi-head attention mechanism can be safely pruned away without significantly harming the performance of the model; such pruning leads to models that are noticeably smaller and faster in practice. Our work introduces a new head pruning technique that we term differentiable subset pruning. Intuitively, our method learns per-head importance variables and then enforces a user-specified hard constraint on the number of unpruned heads. The importance variables are learned via stochastic gradient descent. We conduct experiments on natural language inference and machine translation; we show that differentiable subset pruning performs comparably or better than previous works while offering precise control of the sparsity level.

View on arXiv
Comments on this paper