Computing Diverse Sets of High Quality TSP Tours by EAX-Based Evolutionary Diversity Optimisation

Evolutionary algorithms based on edge assembly crossover~(EAX) constitute some of the best performing incomplete solvers for the well-known traveling salesperson problem~(TSP). Often, it is desirable to compute not just a single solution for a given problem, but a diverse set of high quality solutions from which a decision maker can choose one for implementation. Currently, there are only a few approaches for computing a diverse solution set for the TSP. Furthermore, almost all of them assume that the optimal solution is known. In this paper, we introduce evolutionary diversity optimisation~(EDO) approaches for the TSP that find a diverse set of tours when the optimal tour is known or unknown. We show how to adopt EAX to not only find a high-quality solution but also to maximise the diversity of the population. The resulting EAX-based EDO approach, termed EAX-EDO is capable of obtaining diverse high-quality tours when the optimal solution for the TSP is known or unknown. A comparison to existing approaches shows that they are clearly outperformed by EAX-EDO.
View on arXiv