ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.06693
9
210

Exploring Temporal Coherence for More General Video Face Forgery Detection

15 August 2021
Yinglin Zheng
Jianmin Bao
Dong Chen
Ming Zeng
Fang Wen
    CVBM
    ViT
ArXivPDFHTML
Abstract

Although current face manipulation techniques achieve impressive performance regarding quality and controllability, they are struggling to generate temporal coherent face videos. In this work, we explore to take full advantage of the temporal coherence for video face forgery detection. To achieve this, we propose a novel end-to-end framework, which consists of two major stages. The first stage is a fully temporal convolution network (FTCN). The key insight of FTCN is to reduce the spatial convolution kernel size to 1, while maintaining the temporal convolution kernel size unchanged. We surprisingly find this special design can benefit the model for extracting the temporal features as well as improve the generalization capability. The second stage is a Temporal Transformer network, which aims to explore the long-term temporal coherence. The proposed framework is general and flexible, which can be directly trained from scratch without any pre-training models or external datasets. Extensive experiments show that our framework outperforms existing methods and remains effective when applied to detect new sorts of face forgery videos.

View on arXiv
Comments on this paper