The paper introduces concepts of fairness and explainability (XAI) in artificial intelligence, oriented to solve a sophisticated business problems. For fairness, the authors discuss the bias-inducing specifics, as well as relevant mitigation methods, concluding with a set of recipes for introducing fairness in data-driven organizations. Additionally, for XAI, the authors audit specific algorithms paired with demonstrational business use-cases, discuss a plethora of techniques of explanations quality quantification and provide an overview of future research avenues.
View on arXiv