ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.08760
29
10

Robust outlier detection by de-biasing VAE likelihoods

19 August 2021
Kushal Chauhan
Barath Mohan Umapathi
Pradeep Shenoy
Manish Gupta
D. Sridharan
    DRL
ArXivPDFHTML
Abstract

Deep networks often make confident, yet, incorrect, predictions when tested with outlier data that is far removed from their training distributions. Likelihoods computed by deep generative models (DGMs) are a candidate metric for outlier detection with unlabeled data. Yet, previous studies have shown that DGM likelihoods are unreliable and can be easily biased by simple transformations to input data. Here, we examine outlier detection with variational autoencoders (VAEs), among the simplest of DGMs. We propose novel analytical and algorithmic approaches to ameliorate key biases with VAE likelihoods. Our bias corrections are sample-specific, computationally inexpensive, and readily computed for various decoder visible distributions. Next, we show that a well-known image pre-processing technique -- contrast stretching -- extends the effectiveness of bias correction to further improve outlier detection. Our approach achieves state-of-the-art accuracies with nine grayscale and natural image datasets, and demonstrates significant advantages -- both with speed and performance -- over four recent, competing approaches. In summary, lightweight remedies suffice to achieve robust outlier detection with VAEs.

View on arXiv
Comments on this paper