ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.09913
11
3

Analyzing the Granularity and Cost of Annotation in Clinical Sequence Labeling

23 August 2021
Haozhan Sun
Chenchen Xu
H. Suominen
ArXivPDFHTML
Abstract

Well-annotated datasets, as shown in recent top studies, are becoming more important for researchers than ever before in supervised machine learning (ML). However, the dataset annotation process and its related human labor costs remain overlooked. In this work, we analyze the relationship between the annotation granularity and ML performance in sequence labeling, using clinical records from nursing shift-change handover. We first study a model derived from textual language features alone, without additional information based on nursing knowledge. We find that this sequence tagger performs well in most categories under this granularity. Then, we further include the additional manual annotations by a nurse, and find the sequence tagging performance remaining nearly the same. Finally, we give a guideline and reference to the community arguing it is not necessary and even not recommended to annotate in detailed granularity because of a low Return on Investment. Therefore we recommend emphasizing other features, like textual knowledge, for researchers and practitioners as a cost-effective source for increasing the sequence labeling performance.

View on arXiv
Comments on this paper