ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.10021
14
2

QDEF and Its Approximations in OBDM

23 August 2021
Gianluca Cima
Federico Croce
M. Lenzerini
ArXiv (abs)PDFHTML
Abstract

Given an input dataset (i.e., a set of tuples), query definability in Ontology-based Data Management (OBDM) amounts to find a query over the ontology whose certain answers coincide with the tuples in the given dataset. We refer to such a query as a characterization of the dataset with respect to the OBDM system. Our first contribution is to propose approximations of perfect characterizations in terms of recall (complete characterizations) and precision (sound characterizations). A second contribution is to present a thorough complexity analysis of three computational problems, namely verification (check whether a given query is a perfect, or an approximated characterization of a given dataset), existence (check whether a perfect, or a best approximated characterization of a given dataset exists), and computation (compute a perfect, or best approximated characterization of a given dataset).

View on arXiv
Comments on this paper