ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.10108
13
4

Integrating Transductive And Inductive Embeddings Improves Link Prediction Accuracy

23 August 2021
Chitrank Gupta
Yash Jain
A. De
Soumen Chakrabarti
    AI4CE
ArXivPDFHTML
Abstract

In recent years, inductive graph embedding models, \emph{viz.}, graph neural networks (GNNs) have become increasingly accurate at link prediction (LP) in online social networks. The performance of such networks depends strongly on the input node features, which vary across networks and applications. Selecting appropriate node features remains application-dependent and generally an open question. Moreover, owing to privacy and ethical issues, use of personalized node features is often restricted. In fact, many publicly available data from online social network do not contain any node features (e.g., demography). In this work, we provide a comprehensive experimental analysis which shows that harnessing a transductive technique (e.g., Node2Vec) for obtaining initial node representations, after which an inductive node embedding technique takes over, leads to substantial improvements in link prediction accuracy. We demonstrate that, for a wide variety of GNN variants, node representation vectors obtained from Node2Vec serve as high quality input features to GNNs, thereby improving LP performance.

View on arXiv
Comments on this paper