Construction Cost Index Forecasting: A Multi-feature Fusion Approach
Abstract
The construction cost index is an important indicator of the construction industry. Predicting CCI has important practical significance. This paper combines information fusion with machine learning, and proposes a multi-feature fusion (MFF) module for time series forecasting. Compared with the convolution module, the MFF module is a module that extracts certain features. Experiments have proved that the combination of MFF module and multi-layer perceptron has a relatively good prediction effect. The MFF neural network model has high prediction accuracy and efficient prediction efficiency. At the same time, MFF continues to improve the potential of prediction accuracy, which is a study of continuous attention.
View on arXivComments on this paper
