We present a new method for computing a smooth minimum distance function based on the LogSumExp function for point clouds, edge meshes, triangle meshes, and combinations of all three. We derive blending weights and a modified Barnes-Hut acceleration approach that ensure our method approximates the true distance, and is conservative (points outside the zero isosurface are guaranteed to be outside the surface) and efficient to evaluate for all the above data types. This, in combination with its ability to smooth sparsely sampled and noisy data, like point clouds, shortens the gap between data acquisition and simulation, and thereby enables new applications such as direct, co-dimensional rigid body simulation using unprocessed lidar data.
View on arXiv