ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.11916
11
1

HAN: Higher-order Attention Network for Spoken Language Understanding

26 August 2021
Dongsheng Chen
Zhiqi Huang
Yuexian Zou
ArXivPDFHTML
Abstract

Spoken Language Understanding (SLU), including intent detection and slot filling, is a core component in human-computer interaction. The natural attributes of the relationship among the two subtasks make higher requirements on fine-grained feature interaction, i.e., the token-level intent features and slot features. Previous works mainly focus on jointly modeling the relationship between the two subtasks with attention-based models, while ignoring the exploration of attention order. In this paper, we propose to replace the conventional attention with our proposed Bilinear attention block and show that the introduced Higher-order Attention Network (HAN) brings improvement for the SLU task. Importantly, we conduct wide analysis to explore the effectiveness brought from the higher-order attention.

View on arXiv
Comments on this paper