ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2108.12105
17
0

Full Attention Bidirectional Deep Learning Structure for Single Channel Speech Enhancement

27 August 2021
Yuzi Yan
Weiqiang Zhang
Michael T. Johnson
ArXivPDFHTML
Abstract

As the cornerstone of other important technologies, such as speech recognition and speech synthesis, speech enhancement is a critical area in audio signal processing. In this paper, a new deep learning structure for speech enhancement is demonstrated. The model introduces a "full" attention mechanism to a bidirectional sequence-to-sequence method to make use of latent information after each focal frame. This is an extension of the previous attention-based RNN method. The proposed bidirectional attention-based architecture achieves better performance in terms of speech quality (PESQ), compared with OM-LSA, CNN-LSTM, T-GSA and the unidirectional attention-based LSTM baseline.

View on arXiv
Comments on this paper