ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.00885
16
3

Unsupervised Learning for Target Tracking and Background Subtraction in Satellite Imagery

13 August 2021
Jonathan S. Kent
C. Wamsley
D. Flateau
A. Ferguson
    SSL
ArXivPDFHTML
Abstract

This paper describes an unsupervised machine learning methodology capable of target tracking and background suppression via a novel dual-model approach. ``Jekyll`` produces a video bit-mask describing an estimate of the locations of moving objects, and ``Hyde`` outputs a pseudo-background frame to subtract from the original input image sequence. These models were trained with a custom-modified version of Cross Entropy Loss. Simulated data were used to compare the performance of Jekyll and Hyde against a more traditional supervised Machine Learning approach. The results from these comparisons show that the unsupervised methods developed are competitive in output quality with supervised techniques, without the associated cost of acquiring labeled training data.

View on arXiv
Comments on this paper