ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.00916
23
3

Coarse-To-Fine And Cross-Lingual ASR Transfer

2 September 2021
Peter Polák
Ondrej Bojar
ArXivPDFHTML
Abstract

End-to-end neural automatic speech recognition systems achieved recently state-of-the-art results, but they require large datasets and extensive computing resources. Transfer learning has been proposed to overcome these difficulties even across languages, e.g., German ASR trained from an English model. We experiment with much less related languages, reusing an English model for Czech ASR. To simplify the transfer, we propose to use an intermediate alphabet, Czech without accents, and document that it is a highly effective strategy. The technique is also useful on Czech data alone, in the style of coarse-to-fine training. We achieve substantial eductions in training time as well as word error rate (WER).

View on arXiv
Comments on this paper