ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.03011
62
12
v1v2v3v4v5 (latest)

LEAF: Navigating Concept Drift in Cellular Networks

7 September 2021
Shinan Liu
F. Bronzino
Paul Schmitt
A. Bhagoji
Nick Feamster
Héctor García Crespo
Timothy T Coyle
Brian Ward
ArXiv (abs)PDFHTML
Abstract

Operational networks commonly rely on machine learning models for many tasks, including detecting anomalies, inferring application performance, and forecasting demand. Yet, unfortunately, model accuracy can degrade due to concept drift, whereby the relationship between the features and the target prediction changes due to reasons ranging from software upgrades to seasonality to changes in user behavior. Mitigating concept drift is thus an essential part of operationalizing machine learning models, and yet despite its importance, concept drift has not been extensively explored in the context of networking -- or regression models in general. Thus, it is not well-understood how to detect or mitigate it for many common network management tasks that currently rely on machine learning models. Unfortunately, as we show, concept drift cannot be sufficiently mitigated by frequently retraining models using newly available data, and doing so can even degrade model accuracy further. In this paper, we characterize concept drift in a large cellular network for a major metropolitan area in the United States. We find that concept drift occurs across many important key performance indicators (KPIs), independently of the model, training set size, and time interval -- thus necessitating practical approaches to detect, explain, and mitigate it. To do so, we develop Local Error Approximation of Features (LEAF). LEAF detects drift; explains features and time intervals that most contribute to drift; and mitigates drift using forgetting and over-sampling. We evaluate LEAF against industry-standard mitigation approaches with more than four years of cellular KPI data. Our initial tests with a major cellular provider in the US show that LEAF is effective on a variety of KPIs and models. LEAF consistently outperforms periodic and triggered retraining while reducing costly retraining operations.

View on arXiv
Comments on this paper