ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.03029
26
5

Predicting Mood Disorder Symptoms with Remotely Collected Videos Using an Interpretable Multimodal Dynamic Attention Fusion Network

7 September 2021
Tathagat Banerjee
Matthew Kollada
Pablo Gersberg
Oscar Rodriguez
J. Tiller
A. Jaffe
J. Reynders
ArXiv (abs)PDFHTML
Abstract

We developed a novel, interpretable multimodal classification method to identify symptoms of mood disorders viz. depression, anxiety and anhedonia using audio, video and text collected from a smartphone application. We used CNN-based unimodal encoders to learn dynamic embeddings for each modality and then combined these through a transformer encoder. We applied these methods to a novel dataset - collected by a smartphone application - on 3002 participants across up to three recording sessions. Our method demonstrated better multimodal classification performance compared to existing methods that employed static embeddings. Lastly, we used SHapley Additive exPlanations (SHAP) to prioritize important features in our model that could serve as potential digital markers.

View on arXiv
Comments on this paper