Sampling algorithms based on discretizations of Stochastic Differential Equations (SDEs) compose a rich and popular subset of MCMC methods. This work provides a general framework for the non-asymptotic analysis of sampling error in 2-Wasserstein distance, which also leads to a bound of mixing time. The method applies to any consistent discretization of contractive SDEs. When applied to Langevin Monte Carlo algorithm, it establishes mixing time, without warm start, under the common log-smooth and log-strongly-convex conditions, plus a growth condition on the 3rd-order derivative of the potential of target measures at infinity. This bound improves the best previously known result and is optimal (in terms of order) in both dimension and accuracy tolerance for target measures satisfying the aforementioned assumptions. Our theoretical analysis is further validated by numerical experiments.
View on arXiv