ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.04386
44
13

ErfAct and Pserf: Non-monotonic Smooth Trainable Activation Functions

9 September 2021
Koushik Biswas
Sandeep Kumar
Shilpak Banerjee
A. Pandey
ArXivPDFHTML
Abstract

An activation function is a crucial component of a neural network that introduces non-linearity in the network. The state-of-the-art performance of a neural network depends also on the perfect choice of an activation function. We propose two novel non-monotonic smooth trainable activation functions, called ErfAct and Pserf. Experiments suggest that the proposed functions improve the network performance significantly compared to the widely used activations like ReLU, Swish, and Mish. Replacing ReLU by ErfAct and Pserf, we have 5.68% and 5.42% improvement for top-1 accuracy on Shufflenet V2 (2.0x) network in CIFAR100 dataset, 2.11% and 1.96% improvement for top-1 accuracy on Shufflenet V2 (2.0x) network in CIFAR10 dataset, 1.0%, and 1.0% improvement on mean average precision (mAP) on SSD300 model in Pascal VOC dataset.

View on arXiv
Comments on this paper