ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.05866
11
3

On Solving a Stochastic Shortest-Path Markov Decision Process as Probabilistic Inference

13 September 2021
Mohamed Baioumy
Bruno Lacerda
Paul Duckworth
Nick Hawes
ArXivPDFHTML
Abstract

Previous work on planning as active inference addresses finite horizon problems and solutions valid for online planning. We propose solving the general Stochastic Shortest-Path Markov Decision Process (SSP MDP) as probabilistic inference. Furthermore, we discuss online and offline methods for planning under uncertainty. In an SSP MDP, the horizon is indefinite and unknown a priori. SSP MDPs generalize finite and infinite horizon MDPs and are widely used in the artificial intelligence community. Additionally, we highlight some of the differences between solving an MDP using dynamic programming approaches widely used in the artificial intelligence community and approaches used in the active inference community.

View on arXiv
Comments on this paper