ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.06610
31
24

Statistical limits of dictionary learning: random matrix theory and the spectral replica method

14 September 2021
Jean Barbier
N. Macris
ArXivPDFHTML
Abstract

We consider increasingly complex models of matrix denoising and dictionary learning in the Bayes-optimal setting, in the challenging regime where the matrices to infer have a rank growing linearly with the system size. This is in contrast with most existing literature concerned with the low-rank (i.e., constant-rank) regime. We first consider a class of rotationally invariant matrix denoising problems whose mutual information and minimum mean-square error are computable using techniques from random matrix theory. Next, we analyze the more challenging models of dictionary learning. To do so we introduce a novel combination of the replica method from statistical mechanics together with random matrix theory, coined spectral replica method. This allows us to derive variational formulas for the mutual information between hidden representations and the noisy data of the dictionary learning problem, as well as for the overlaps quantifying the optimal reconstruction error. The proposed method reduces the number of degrees of freedom from Θ(N2)\Theta(N^2)Θ(N2) matrix entries to Θ(N)\Theta(N)Θ(N) eigenvalues (or singular values), and yields Coulomb gas representations of the mutual information which are reminiscent of matrix models in physics. The main ingredients are a combination of large deviation results for random matrices together with a new replica symmetric decoupling ansatz at the level of the probability distributions of eigenvalues (or singular values) of certain overlap matrices and the use of HarishChandra-Itzykson-Zuber spherical integrals.

View on arXiv
Comments on this paper