ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.07441
30
12

DPGen: Automated Program Synthesis for Differential Privacy

15 September 2021
Yuxin Wang
Zeyu Ding
Yingtai Xiao
Daniel Kifer
Danfeng Zhang
    SyDa
ArXivPDFHTML
Abstract

Differential privacy has become a de facto standard for releasing data in a privacy-preserving way. Creating a differentially private algorithm is a process that often starts with a noise-free (non-private) algorithm. The designer then decides where to add noise, and how much of it to add. This can be a non-trivial process -- if not done carefully, the algorithm might either violate differential privacy or have low utility. In this paper, we present DPGen, a program synthesizer that takes in non-private code (without any noise) and automatically synthesizes its differentially private version (with carefully calibrated noise). Under the hood, DPGen uses novel algorithms to automatically generate a sketch program with candidate locations for noise, and then optimize privacy proof and noise scales simultaneously on the sketch program. Moreover, DPGen can synthesize sophisticated mechanisms that adaptively process queries until a specified privacy budget is exhausted. When evaluated on standard benchmarks, DPGen is able to generate differentially private mechanisms that optimize simple utility functions within 120 seconds. It is also powerful enough to synthesize adaptive privacy mechanisms.

View on arXiv
Comments on this paper