ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.07473
23
4
v1v2 (latest)

Generalized XGBoost Method

15 September 2021
Yang Guang
ArXiv (abs)PDFHTML
Abstract

The XGBoost method has many advantages and is especially suitable for statistical analysis of big data, but its loss function is limited to convex functions. In many specific applications, a nonconvex loss function would be preferable. In this paper, I propose a generalized XGBoost method, which requires weaker loss function constraint and involves more general loss functions, including convex loss functions and some non-convex loss functions. Furthermore, this generalized XGBoost method is extended to multivariate loss function to form a more generalized XGBoost method. This method is a multiobjective parameter regularized tree boosting method, which can model multiple parameters in most of the frequently-used parametric probability distributions to be fitted by predictor variables. Meanwhile, the related algorithms and some examples in non-life insurance pricing are given.

View on arXiv
Comments on this paper