ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.08129
10
3

Does Summary Evaluation Survive Translation to Other Languages?

16 September 2021
Neslihan Iskender
Oleg V. Vasilyev
Neslihan Iskender
John Bohannon
ArXivPDFHTML
Abstract

The creation of a quality summarization dataset is an expensive, time-consuming effort, requiring the production and evaluation of summaries by both trained humans and machines. If such effort is made in one language, it would be beneficial to be able to use it in other languages without repeating human annotations. To investigate how much we can trust machine translation of such a dataset, we translate the English dataset SummEval to seven languages and compare performance across automatic evaluation measures. We explore equivalence testing as the appropriate statistical paradigm for evaluating correlations between human and automated scoring of summaries. While we find some potential for dataset reuse in languages similar to the source, most summary evaluation methods are not found to be statistically equivalent across translations.

View on arXiv
Comments on this paper