ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.09506
42
11

Decoupling Long- and Short-Term Patterns in Spatiotemporal Inference

16 September 2021
Junfeng Hu
Yuxuan Liang
Zhencheng Fan
Ying Zhang
Yifang Yin
Roger Zimmermann
    AI4TS
ArXivPDFHTML
Abstract

Sensors are the key to environmental monitoring, which impart benefits to smart cities in many aspects, such as providing real-time air quality information to assist human decision-making. However, it is impractical to deploy massive sensors due to the expensive costs, resulting in sparse data collection. Therefore, how to get fine-grained data measurement has long been a pressing issue. In this paper, we aim to infer values at non-sensor locations based on observations from available sensors (termed spatiotemporal inference), where capturing spatiotemporal relationships among the data plays a critical role. Our investigations reveal two significant insights that have not been explored by previous works. Firstly, data exhibits distinct patterns at both long- and short-term temporal scales, which should be analyzed separately. Secondly, short-term patterns contain more delicate relations including those across spatial and temporal dimensions simultaneously, while long-term patterns involve high-level temporal trends. Based on these observations, we propose to decouple the modeling of short-term and long-term patterns. Specifically, we introduce a joint spatiotemporal graph attention network to learn the relations across space and time for short-term patterns. Furthermore, we propose a graph recurrent network with a time skip strategy to alleviate the gradient vanishing problem and model the long-term dependencies. Experimental results on four public real-world datasets demonstrate that our method effectively captures both long- and short-term relations, achieving state-of-the-art performance against existing methods.

View on arXiv
Comments on this paper