163
v1v2 (latest)

Introduction to Neural Network Verification

Abstract

Deep learning has transformed the way we think of software and what it can do. But deep neural networks are fragile and their behaviors are often surprising. In many settings, we need to provide formal guarantees on the safety, security, correctness, or robustness of neural networks. This book covers foundational ideas from formal verification and their adaptation to reasoning about neural networks and deep learning.

View on arXiv
Comments on this paper