ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.10354
16
0

A Bernstein-type Inequality for High Dimensional Linear Processes with Applications to Robust Estimation of Time Series Regressions

21 September 2021
Linbo Liu
Danna Zhang
    AI4TS
ArXivPDFHTML
Abstract

Time series regression models are commonly used in time series analysis. However, in modern real-world applications, serially correlated data with an ultra-high dimension and fat tails are prevalent. This presents a challenge in developing new statistical tools for time series analysis. In this paper, we propose a novel Bernstein-type inequality for high-dimensional linear processes and apply it to investigate two high-dimensional robust estimation problems: (1) time series regression with fat-tailed and correlated covariates and errors, and (2) fat-tailed vector autoregression. Our proposed approach allows for exponential increases in dimension with sample size under mild moment and dependence conditions, while ensuring consistency in the estimation process.

View on arXiv
Comments on this paper