ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.11121
16
25

Rational Polynomial Camera Model Warping for Deep Learning Based Satellite Multi-View Stereo Matching

23 September 2021
Jian Gao
Jin Liu
Shunping Ji
ArXivPDFHTML
Abstract

Satellite multi-view stereo (MVS) imagery is particularly suited for large-scale Earth surface reconstruction. Differing from the perspective camera model (pin-hole model) that is commonly used for close-range and aerial cameras, the cubic rational polynomial camera (RPC) model is the mainstream model for push-broom linear-array satellite cameras. However, the homography warping used in the prevailing learning based MVS methods is only applicable to pin-hole cameras. In order to apply the SOTA learning based MVS technology to the satellite MVS task for large-scale Earth surface reconstruction, RPC warping should be considered. In this work, we propose, for the first time, a rigorous RPC warping module. The rational polynomial coefficients are recorded as a tensor, and the RPC warping is formulated as a series of tensor transformations. Based on the RPC warping, we propose the deep learning based satellite MVS (SatMVS) framework for large-scale and wide depth range Earth surface reconstruction. We also introduce a large-scale satellite image dataset consisting of 519 5120×{\times}×5120 images, which we call the TLC SatMVS dataset. The satellite images were acquired from a three-line camera (TLC) that catches triple-view images simultaneously, forming a valuable supplement to the existing open-source WorldView-3 datasets with single-scanline images. Experiments show that the proposed RPC warping module and the SatMVS framework can achieve a superior reconstruction accuracy compared to the pin-hole fitting method and conventional MVS methods. Code and data are available at https://github.com/WHU-GPCV/SatMVS.

View on arXiv
Comments on this paper