ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.11140
17
0

Joint speaker diarisation and tracking in switching state-space model

23 September 2021
J. H. M. Wong
Yifan Gong
ArXivPDFHTML
Abstract

Speakers may move around while diarisation is being performed. When a microphone array is used, the instantaneous locations of where the sounds originated from can be estimated, and previous investigations have shown that such information can be complementary to speaker embeddings in the diarisation task. However, these approaches often assume that speakers are fairly stationary throughout a meeting. This paper relaxes this assumption, by proposing to explicitly track the movements of speakers while jointly performing diarisation within a unified model. A state-space model is proposed, where the hidden state expresses the identity of the current active speaker and the predicted locations of all speakers. The model is implemented as a particle filter. Experiments on a Microsoft rich meeting transcription task show that the proposed joint location tracking and diarisation approach is able to perform comparably with other methods that use location information.

View on arXiv
Comments on this paper