ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.11343
8
1

Towards Explainable Scientific Venue Recommendations

21 September 2021
Bastian Schafermeier
Gerd Stumme
Tom Hanika
ArXivPDFHTML
Abstract

Selecting the best scientific venue (i.e., conference/journal) for the submission of a research article constitutes a multifaceted challenge. Important aspects to consider are the suitability of research topics, a venue's prestige, and the probability of acceptance. The selection problem is exacerbated through the continuous emergence of additional venues. Previously proposed approaches for supporting authors in this process rely on complex recommender systems, e.g., based on Word2Vec or TextCNN. These, however, often elude an explanation for their recommendations. In this work, we propose an unsophisticated method that advances the state-of-the-art in two aspects: First, we enhance the interpretability of recommendations through non-negative matrix factorization based topic models; Second, we surprisingly can obtain competitive recommendation performance while using simpler learning methods.

View on arXiv
Comments on this paper