ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.11790
19
24

Learning Dual Dynamic Representations on Time-Sliced User-Item Interaction Graphs for Sequential Recommendation

24 September 2021
Zeyuan Chen
Wei Zhang
Junchi Yan
Gang Wang
Jianyong Wang
    AI4TS
ArXivPDFHTML
Abstract

Sequential Recommendation aims to recommend items that a target user will interact with in the near future based on the historically interacted items. While modeling temporal dynamics is crucial for sequential recommendation, most of the existing studies concentrate solely on the user side while overlooking the sequential patterns existing in the counterpart, i.e., the item side. Although a few studies investigate the dynamics involved in the dual sides, the complex user-item interactions are not fully exploited from a global perspective to derive dynamic user and item representations. In this paper, we devise a novel Dynamic Representation Learning model for Sequential Recommendation (DRL-SRe). To better model the user-item interactions for characterizing the dynamics from both sides, the proposed model builds a global user-item interaction graph for each time slice and exploits time-sliced graph neural networks to learn user and item representations. Moreover, to enable the model to capture fine-grained temporal information, we propose an auxiliary temporal prediction task over consecutive time slices based on temporal point process. Comprehensive experiments on three public real-world datasets demonstrate DRL-SRe outperforms the state-of-the-art sequential recommendation models with a large margin.

View on arXiv
Comments on this paper