ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.12058
18
6

Optimized Power Normalized Cepstral Coefficients towards Robust Deep Speaker Verification

24 September 2021
Xuechen Liu
Md. Sahidullah
Tomi Kinnunen
ArXivPDFHTML
Abstract

After their introduction to robust speech recognition, power normalized cepstral coefficient (PNCC) features were successfully adopted to other tasks, including speaker verification. However, as a feature extractor with long-term operations on the power spectrogram, its temporal processing and amplitude scaling steps dedicated on environmental compensation may be redundant. Further, they might suppress intrinsic speaker variations that are useful for speaker verification based on deep neural networks (DNN). Therefore, in this study, we revisit and optimize PNCCs by ablating its medium-time processor and by introducing channel energy normalization. Experimental results with a DNN-based speaker verification system indicate substantial improvement over baseline PNCCs on both in-domain and cross-domain scenarios, reflected by relatively 5.8% and 61.2% maximum lower equal error rate on VoxCeleb1 and VoxMovies, respectively.

View on arXiv
Comments on this paper