ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.12414
16
6

Vehicle Detection and Tracking From Surveillance Cameras in Urban Scenes

25 September 2021
Oumayma Messoussi
F. Magalhães
Francois Lamarre
Francis Perreault
Ibrahima Sogoba
Guillaume-Alexandre Bilodeau
Gabriela Nicolescu
    VOT
ArXivPDFHTML
Abstract

Detecting and tracking vehicles in urban scenes is a crucial step in many traffic-related applications as it helps to improve road user safety among other benefits. Various challenges remain unresolved in multi-object tracking (MOT) including target information description, long-term occlusions and fast motion. We propose a multi-vehicle detection and tracking system following the tracking-by-detection paradigm that tackles the previously mentioned challenges. Our MOT method extends an Intersection-over-Union (IOU)-based tracker with vehicle re-identification features. This allows us to utilize appearance information to better match objects after long occlusion phases and/or when object location is significantly shifted due to fast motion. We outperform our baseline MOT method on the UA-DETRAC benchmark while maintaining a total processing speed suitable for online use cases.

View on arXiv
Comments on this paper