ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.13304
11
1

On Isotropy Calibration of Transformers

27 September 2021
Yue Ding
Karolis Martinkus
Damian Pascual
Simon Clematide
Roger Wattenhofer
ArXivPDFHTML
Abstract

Different studies of the embedding space of transformer models suggest that the distribution of contextual representations is highly anisotropic - the embeddings are distributed in a narrow cone. Meanwhile, static word representations (e.g., Word2Vec or GloVe) have been shown to benefit from isotropic spaces. Therefore, previous work has developed methods to calibrate the embedding space of transformers in order to ensure isotropy. However, a recent study (Cai et al. 2021) shows that the embedding space of transformers is locally isotropic, which suggests that these models are already capable of exploiting the expressive capacity of their embedding space. In this work, we conduct an empirical evaluation of state-of-the-art methods for isotropy calibration on transformers and find that they do not provide consistent improvements across models and tasks. These results support the thesis that, given the local isotropy, transformers do not benefit from additional isotropy calibration.

View on arXiv
Comments on this paper