ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.13570
231
71
v1v2 (latest)

Adaptive Informative Path Planning Using Deep Reinforcement Learning for UAV-based Active Sensing

28 September 2021
Julius Ruckin
Liren Jin
Marija Popović
ArXiv (abs)PDFHTML
Abstract

Aerial robots are increasingly being utilized for environmental monitoring and exploration. However, a key challenge is efficiently planning paths to maximize the information value of acquired data as an initially unknown environment is explored. To address this, we propose a new approach for informative path planning based on deep reinforcement learning (RL). Combining recent advances in RL and robotic applications, our method combines tree search with an offline-learned neural network predicting informative sensing actions. We introduce several components making our approach applicable for robotic tasks with high-dimensional state and large action spaces. By deploying the trained network during a mission, our method enables sample-efficient online replanning on platforms with limited computational resources. Simulations show that our approach performs on par with existing methods while reducing runtime by 8-10x. We validate its performance using real-world surface temperature data.

View on arXiv
Comments on this paper