ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 2109.14099
16
9

An Explainable-AI approach for Diagnosis of COVID-19 using MALDI-ToF Mass Spectrometry

28 September 2021
V. Seethi
Z. LaCasse
P. Chivte
Joshua Bland
Shrihari S. Kadkol
E. Gaillard
Pratool Bharti
Hamed Alhoori
ArXivPDFHTML
Abstract

The severe acute respiratory syndrome coronavirus type-2 (SARS-CoV-2) caused a global pandemic and immensely affected the global economy. Accurate, cost-effective, and quick tests have proven substantial in identifying infected people and mitigating the spread. Recently, multiple alternative platforms for testing coronavirus disease 2019 (COVID-19) have been published that show high agreement with current gold standard real-time polymerase chain reaction (RT-PCR) results. These new methods do away with nasopharyngeal (NP) swabs, eliminate the need for complicated reagents, and reduce the burden on RT-PCR test reagent supply. In the present work, we have designed an artificial intelligence-based (AI) testing method to provide confidence in the results. Current AI applications for COVID-19 studies often lack a biological foundation in the decision-making process, and our AI approach is one of the earliest to leverage explainable AI (X-AI) algorithms for COVID-19 diagnosis using mass spectrometry. Here, we have employed X-AI to explain the decision-making process on a local (per-sample) and global (all samples) basis underscored by biologically relevant features. We evaluated our technique with data extracted from human gargle samples and achieved a testing accuracy of 94.12%. Such techniques would strengthen the relationship between AI and clinical diagnostics by providing biomedical researchers and healthcare workers with trustworthy and, most importantly, explainable test results

View on arXiv
Comments on this paper